If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2+7q+1=0
a = 2; b = 7; c = +1;
Δ = b2-4ac
Δ = 72-4·2·1
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{41}}{2*2}=\frac{-7-\sqrt{41}}{4} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{41}}{2*2}=\frac{-7+\sqrt{41}}{4} $
| 7)5p-14=8p+4 | | 11+4=-3(4x-5) | | -x/6+4=2 | | 28=9i+8-16 | | 4x/0.2=0.3 | | x^2−170*x+7050=0 | | 3x2-6x-1=0 | | 4x+10=8x+-10 | | 7.5=v-50/5 | | 8k^2-3=0 | | 1=28-0.14x | | c-6=+1 | | 6t=3(t+4)-t | | -2x+7=-6 | | 4=2*v | | 2/6=14y | | –8+7v=8+7v | | 2r^2-8r+6=0 | | v/5=1 | | 2^(3x+1)=9 | | 7x-9=4x-4 | | 6z-6=48 | | 45+x+0.5x+2=150 | | 4x+15=43x= | | y^4+32y^2+256=0 | | g(3)=−5(3)+13 | | x-36=3x-6+4x | | -8x-7(x+2)=76 | | Y=5x+2= | | 4(5x+8)=0.5(7x-12) | | x/9-16=-14 | | (3x−8)+(4x−17)=180 |